
Programming FPGA EEPROM Configuration Memory
Over VME

:
Using the FPGA to Configure Its Own EEPROM Configuration

Memory

Craig Drennan
December 16, 2004

I. Introduction

The modules being developed for the Beam Loss Monitor Upgrade are 6U VME module
utilizing large FPGA’s to implement tasks such as data transfer, abort decision logic and
signal processing. The desire is to be able to download the FPGA configuration
information via the VME crate processor and VME bus to the serial EEPROM devices
that program the FPGA at power up. The approach retains the ability to use an EEPROM
programming cable connected directly to the PCB programming header as is done in
development.

This note will describe how the circuits are wired and list the documentation that the
programmer will need to understand how to format and load the configuration files.
Since this approach is not specifically prescribed in any of the FPGA vendor or
EEPROM vendor literature, we will also list and explain the function and operation of all
of the configuration control lines involved in programming the EEPROM and
configuring the FPGA.

This document is not at all final at this point. It was written to help work out the details
of programming the FPGA’s with the board designers on the project.

II. The Schematic Wiring

The method’s described in this note assume the use of Altera Cyclone FPGA’s and Atmel
AT17LV002A serial configuration memories on the BLM Upgrade VME modules..

 Figure II.1 is the schematic of the connections between the FPGA and the configuration
memory. The FPGA’s are programmed in what Altera calls the Passive Serial (PS)
mode. In this mode the FPGA never drives the DCLK or DATA0 lines. The AT17LV
configurator drives these lines during FPGA configuration. During configurator
programming the SER_EN / line is pulled low. When the AT17LV is in this mode it

will not drive the DCLK line, but will pull the DATA line low periodically to signal the
ACK acknowledge during programming.

There are two methods for programming the configurator. The first is by connecting the
Atmel ADTH2225 programming cable to the ISP Header. Configuration files are
downloaded to the AT17LV from a PC running Atmel’s Configurator Programming
System (CPS) software. The ISP Header could be mounted to the faceplate of the VME
module so the configurator can be programmed without removing it from the crate. The
programming cable may be connected, new configurator data downloaded and the cable
disconnected while the module is running without interfering with the operation of the
FPGA. In order to have the new configuration loaded into the FPGA the power to the
module would need to be cycled or the nCONFIG pin on the FPGA pulled low
momentarily. Note that reconfiguration will not proceed if the programming cable is
connected, since it pulls the SER_EN / signal low disabling the AT17LV’s DCLK
output. The CPS software can be downloaded from www.atmel.com.

Figure II.1 The proposed hook up of the FPGA and configurator for in system
programming.

Figure II.2 The schematic of the ADTH2225 programming cable.

The second method for programming the configurator is over the VME bus, through
control logic that will be programmed into the FPGA. The FPGA will drive the DATA
and DCLK lines and pull down the SER_EN / pin of the AT17LV. There are a couple of
concerns that are addressed in the circuit shown in Figure II.1. First, we want to avoid
any situation where the FPGA and the ADTH2225 programming cable are driving the
same signals at the same time. Second we must guarantee that if the control lines from
the FPGA are ever mis-configured it will not interfere with our ability to program the
configurator using the programming cable.

The 74ALS38B Quad 2 Input NAND Gates with open collectors is used to isolate the
FPGA from the control lines. Open drain or tri-state outputs could have been
implemented in the FPGA, but if these pins were accidentally reconfigured it could cause
a problem. In order to enable the FPGA control signals Pin 9 needs to be jumpered to Pin
7 (GND) of the ISP Header. If a jumper shunt or another plug inserted into the ISP
Header is used for this purpose it would also be a physical obstruction to connecting the
programming cable. When this jumper is removed and the programming cable
connected, Pin 9 will not be pulled down and the signal line on Pin 9 is set high. Figure
II.3 shows how Pin 9 is used to enable or hold off the FPGA control signals using the
NAND gates.

Figure II.3 Logic for isolating the FPGA configurator control signals.

An alternate way of isolating the two methods of programming was suggested. This was
to connect the FPGA control signals to a second programming header which could be
jumpered to the main ISP Header using a small ribbon cable assembly. This would work
fine except it would preclude mounting of the ISP Header on the VME front panel since
there is likely not enough room on the front panel for two headers.

III. Programming Specifications

The essential document that describes how to program the Atmel configuration memory
is

“Programming Specification for AT17LV(A) Series FPGA Configuration Memories”,
AT17LV Series FPGA Configuration Memory Application Note, Revision 0437K-CNFG-
05/03.

This document describes programming the device, verifying the device, and setting the
reset polarity. It also contains the DC and AC Timing specification for the device. The
other documents that should be reviewed to have a full understanding on using the
AT17LV(A) configurator are

“In-System Programming Cable, ATDH2225”, Revision 2288A-05/01

“Introducing Atmel AT17LV Series FPGA Configuration Memories” 2295B-CNFG–
09/02

These documents are available on the Atmel www site.

http://www.atmel.com/products/Config/

Excerpt From Altera Documentation
“Chapter 13 Configuring Cyclone FPGAs”, pages 13-15 to 13-17
http://www.altera.com/literature/hb/cyc/cyc_c51013.pdf

Passive Serial Configuration
Cyclone FPGAs also feature the PS configuration scheme supported by all
Altera FPGAs. In the PS scheme, an external host (configuration device,
embedded processor, or host PC) controls configuration. Configuration
data is clocked into the target Cyclone FPGAs via the DATA0 pin at each
rising edge of DCLK. The configuration waveforms for this scheme are
shown in Figure 13–8.

PS Configuration using Configuration Device
In the PS configuration device scheme, nCONFIG is usually tied to VCC
(when using EPC16, EPC8, EPC4, or EPC2 devices, you can connect
nCONFIG to nINIT_CONF). Upon device power-up, the target Cyclone
FPGA senses the low-to-high transition on nCONFIG and initiates
configuration. The target device then drives the open-drain CONF_DONE
pin low, which in-turn drives the configuration device’s nCS pin low.
When exiting POR, both the target and configuration device release the
open-drain nSTATUS pin (typically Cyclone POR lasts 100 ms).

Before configuration begins, the configuration device goes through a POR
delay of up to 100 ms (maximum) to allow the power supply to stabilize.
You must power the Cyclone FPGA before or during the POR time of the
enhanced configuration device. During POR, the configuration device
drives its OE pin low. This low signal delays configuration because the OE
pin is connected to the target device’s nSTATUS pin. When the target and
configuration devices complete POR, they both release the nSTATUS to
OE line, which is then pulled high by a pull-up resistor.

When configuring multiple devices, configuration does not begin until all
devices release their OE or nSTATUS pins. When all devices are ready, the
configuration device clocks out DATA and DCLK to the target devices
using an internal oscillator.

After successful configuration, the Cyclone FPGA starts initialization
using the 10-MHz internal oscillator as the reference clock. The

CONF_DONE pin is released by the target device and then pulled high by
a pull-up resistor. When initialization is complete, the target Cyclone
FPGA enters user mode.

If an error occurs during configuration, the target device drives its
nSTATUS pin low, resetting itself internally and resetting the
configuration device. If you turn on the Auto-Restart Configuration on
Frame Error option, the device reconfigures automatically if an error
occurs. To set this option, select Compiler Settings (Processing menu),
and click on the Chips & Devices tab. Select Device & Pin Options, and
click on the Configuration tab.
If the Auto-Restart Configuration on Frame Error option is turned off,
the external system (configuration device or microprocessor) must
monitor nSTATUS for errors and then pulse nCONFIG low to restart
configuration. The external system can pulse nCONFIG if it is under
system control rather than tied to VCC. When configuration is complete,
the target device releases CONF_DONE, which disables the configuration
device by driving nCS high. The configuration device drives DCLK low
before and after configuration.

In addition, if the configuration device sends all of its data and then
detects that CONF_DONE has not gone high, it recognizes that the target
device has not configured successfully. (For CONF_DONE to reach a high
state, enhanced configuration devices wait for 64 DCLK cycles after the
last configuration bit. EPC2 devices wait for 16 DCLK cycles.) In this case,
the configuration device pulses its OE pin low for a few microseconds,
driving the target device’s nSTATUS pin low. If the Auto-Restart
Configuration on Frame Error option is set in the Quartus II software, the
target device resets and then releases its nSTATUS pin after a reset timeout
period. When nSTATUS returns high, the configuration device
reconfigures the target device.

You should not pull CONF_DONE low to delay initialization. Instead, use
the Quartus II software’s User-Supplied Start-Up Clock option to
synchronize the initialization of multiple devices that are not in the same
configuration chain. Devices in the same configuration chain initialize
together since their CONF_DONE pins are tied together. For more
information on this option, see “Device Options” on page 13–45.
CONF_DONE goes high during the first few clock cycles of initialization.
Hence when using the CLKUSR feature you would not see the
CONF_DONE signal high until you start clocking CLKUSR. However, the
device does retain configuration data and waits for these initialization
clocks to release CONF_DONE and go into user mode.

NOTE: When using internal pull-up resistors on configuration devices,
power the supply voltage on the Cyclone FPGA I/O pins

(VCCIO) to 3.3-V. EPC2, EPC4, EPC8, and EPC16 devices support
3.3-V operation but not 2.5-V operation. Therefore, you must set
the VCCIO voltages for the banks where programming pins reside
to 3.3 V.

